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We introduce a discrete Fourier transform technique which extracts more spectral infor-
mation from a given time series data set than conventional discrete Fourier transform
(DFT). Valid information is obtained between the spectral bins of conventional DFT, scal-
loping error is greatly reduced, and amplitude and phase of Fourier components are more
true to the process under study as with conventional DFT. We call the general idea Trim-
to-Coherence Fourier Transform, and its particular embodiment ‘Phase-Rotation Fourier
Transform’. Treatment of the raw data is minimally invasive; e.g. there is no zero padding.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fourier transform of the temporal variation of physical quantities provides information on the spectral content which in
many cases gives valuable insight into the mechanism creating the temporal variation. Examples are abundant and run the
gamut from acoustics to civil engineering to wireless communications to physiology.

Consider a time-varying function sðtÞ (signal), sampled at the time instants t ¼ 0;Dt;2Dt; . . . ; ðN � 1ÞDt where Dt is the
constant sampling time chosen so that Nyquist’s sampling condition is fulfilled. The samples are denoted by
sn ¼ sðnDtÞ ðn ¼ 0; . . . ;N � 1Þ. Each sample represents a time slot of duration Dt; a record of N successive data points
s ¼ fs0; s1; . . . ; sN�1g (time series) is the discrete representation of a partial history of duration T ¼ NDt (time window) of
the signal. This partial, discretized representation reflects the signal’s properties only within certain bounds of accuracy.
The question typically is to which precision the frequency, amplitude and phase of some oscillation in the signal can be
retrieved from the time series. We present a variation on the established procedure which can, in some circumstances, pro-
vide improved accuracy on this count.

1.1. Continuation and edge effects

A Fourier transform on a finite time series results in a discrete spectrum. Since the phase of the resulting complex spectral
values is 2p-periodic and thus carries ambiguity, the Fourier transform can therefore be considered as a Fourier transform of
a periodic continuation of the finite time series.

Consider as a first example that the time series represents a single harmonic oscillation of fixed frequency, amplitude and
phase. Further assume for now that an integer number of oscillation periods fits precisely into the window length; this
. All rights reserved.
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coincidence is called coherent sampling or synchronous sampling [1]. Then the periodic continuation of the window transforms
the finite-length, rectangularly truncated oscillation into a continuous, unperturbed oscillation. In the spectral domain, one
particular bin will represent that frequency exactly. This is the most favorable case in which both amplitude and phase at the
underlying frequency are obtained without error. Since N samples generate N=2 different frequency bins, the frequency is
certainly located to better than the separation to the neighboring bins. Specifically, if the window has N sample points
and k such points constitute one period of oscillation (k divides N in the coherent case), then the signal is found in the
N=kth bin. The distance of neighboring bins is equal to k=N. Note that this may be a small number; it constitutes an upper
bound for the relative spectral half-width, but any finer subdivisions of the frequency domain are fictitious at this point.

Now consider the non-coherent case: the period of the oscillations is such that a non-integer number of periods is repre-
sented within the length of the time series. Periodic continuation now produces an oscillation in which phase jumps occur
periodically (every N data points), as sketched in Fig. 1. The result is a broadened spectral line. Also, the frequency falls be-
tween two bins in the spectral domain, so that both neighboring bins will contain nonzero amplitude values; this gives rise
to the scalloping error. It attains its maximum when the frequency falls halfway between two bins, where the frequency is off
by one half the bin separation, and the amplitude by �3.92 dB [2].

The usual strategy to reduce the frequency and amplitude inaccuracies is to subject the time series to an apodization [2],
also referred to as a windowing function or tapering. Windowing eliminates the artifacts from convolution of the spectrum
with that of the rectangular window (false spectral peaks) by smearing out the phase jumps from the continuation in the
non-coherent case, and by way of broadening the spectral line it also reduces the amount of scalloping amplitude error.

To determine values between the bins one can use improved interpolation methods. Assuming that there is no additional
information outside the measured range, one can apply the Whittaker–Shannon interpolation formula [3] for the spectral
domain. This method works fine in the temporal domain, where the data set is always real, but in the frequency domain this
interpolation formula is usually inapplicable. The results of the methods presented here are similar to the Whittaker–Shan-
non interpolation formula but are universally applicable.

2. A novel approach

To explain the core idea about the Trim-to-Coherence Fourier Transform, consider again the case of a simple harmonic oscil-
lation of which only a very few periods are within the recorded time series. In our proposal, a synchronization of the signal
and the measured window is used to evoke the error free coherent case. In particular, we introduce what we call Phase-Rota-
tion Fourier Transform (PFT); the Appendix presents a full mathematical formulation.

Start with the available time series s with arbitrary but fixed sample length N. By DFT of length N, one obtains
Fig. 1.
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We now show how one can approach the coherence condition by, in effect, rescaling the frequency axis. To this end we shift
the signal through a rotation of its phase. The data points sn ðn ¼ 0; . . . ;N � 1Þ are treated as complex values even if they are
originally real. Each data point is rotated in phase by multiplication with a term of absolute value one:
sn ! sðdÞn ¼ sne�iu ¼ sn � exp �idp 2n
N
� 1
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with the spectral resolution constant d. In principle, one could choose any d to access a certain frequency. To achieve equally
spaced spectral information, one should choose d ¼ 1

D with a positive integer number of intermediate points D. The rotation
angle starts with u ¼ �dp at n ¼ 0, increases with n, and reaches its maximum of u ¼ dp N�2

N at n ¼ N � 1. In other words, the
phase is linearly ramped across the time window. When this modified data set is Fourier-transformed, it has acquired a shift
of the frequency scale according to the displacement law of Fourier transform
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k

NDt
! f ðdÞk ¼ fk þ d

1
NDt

: ð3Þ
Top: Sine wave with phase disruptions, as it occurs from periodic continuation in the non-coherent case. Bottom: By truncation of the time series
ing the part indicated by shading) such that the coherence condition is met, a smooth continuation is achieved. This is the core idea of our proposal,
erence can also be attained without sacrificing data points.
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The variable d defines the amount of spectral shift. At d ¼ 0 the spectrum is not shifted at all, and d ¼ 1 the spectrum is
shifted by a full bin. Therefore, it is fully sufficient to use 0 < d < 1 to get information between bins. Specifically, if one
wishes to achieve D intermediate values, one can choose d ¼ 0=D;1=D; . . . ; ðD� 1Þ=D, and perform a Fourier transform at
each of these D steps.

The additional phase-rotation in effect rescales the frequency. As the frequency is increased, the underlying frequency
and the given time window will eventually reach the coherence point within the precision given by the D discrete steps. Here
the spectrum will reach a maximum amplitude. Plotting all spectral data ~sðdÞk at the new frequencies f ðdÞk yields a high reso-
lution spectrum.

2.0.1. Procedure for PFT

The procedure for PFT in compact form is this:
Input: N P 8; Dt > 0; D 2 N (one may conveniently choose N as a power of 2 and D 2 f4;8;16; . . .g).

sn ¼ sðnDtÞ ðn ¼ 0; . . . ;N � 1Þ sampled values of a sufficiently smooth, quasiperiodic function sðtÞ:

� For d ¼ 0; 1
D ; . . . ; D�1

D compute by DFT (or if possible by FFT) of length N for ðk ¼ 0; . . . ;N � 1Þ
Fig. 2.
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NDt is the wanted frequency and ~sðd
0 Þ
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is the corresponding complex amplitude.

Output: k0þd0

NDt frequency of sðtÞ, ~sðd
0 Þ

k0
complex amplitude.

3. Demonstrations

We will now demonstrate that this technique is beneficial: amplitude, frequency and phase of the spectral maximum are
located with improved precision. We go through several examples to illustrate the difference.

3.1. Simple harmonic oscillation

3.1.1. Fixed frequency
Consider as the simplest case a sinusoidal wave
sn ¼ cosð2pf1nÞ ðn ¼ 0; . . . ;N � 1Þ ð5Þ
with the normalized frequency f1 ¼ fDt sampled with N ¼ 28 and 1=k ¼ 0:06 ¼ f1 (the latter implies that k � 16:7 points con-
stitute one cycle). The time series then represents N=k � 15:4 periods of this oscillation. Fig. 2 compares conventional DFT
(with no apodization used) and PFT. Frequency is here scaled to the Nyquist frequency which is half the sampling frequency.
Only the low frequency part is shown for clarity. The lowest nonzero frequency is at 1=N. In comparison, DFT produces sparse
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The sinusoidal signal equation (5) with a normalized frequency of 1/k = 0.06 (see vertical dotted line), analyzed with DFT (large symbols) and PFT
symbols). Frequency is scaled to the Nyquist frequency; the lowest frequency bin is at 1/256.
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data points from which it is hard to assess the spectral peak. It is evident that the signal is identified with much better pre-
cision when PFT is employed.

On close inspection, there are small secondary maxima in the power spectrum. These occur because off the position of the
maximum, the coherence condition is not precisely met, and the continuation gives rise to phase jumps; therefore the square
window is felt and convoluted into the spectrum.

To illustrate this last point, we present Fig. 3. It is based on the same data as in Fig. 2 but has a logarithmic vertical axis. In
addition, it contains the result from a modified procedure in which a four-term Blackman–Harris apodization window was
employed [2]. The apodization suppresses the background, which consists of ripples, by about eight orders of magnitude.
This highly desirable modification comes at the price that the width of the spectral peak is increased by a factor of roughly
2, and the amplitude is also altered. The apodization affects both DFT and PFT in the same way, but PFT gives information
between the original bins and therefore provides the peak position to a much better precision.

3.1.2. Variation of frequency
To obtain more precise statements about the achieved precision in the determination of frequency and amplitude, we

consider simple harmonic oscillations at various frequencies f1. Whenever the coherence condition is fulfilled by coinci-
dence, even conventional DFT will return a precise frequency and amplitude value. For all other cases, however, the best
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Fig. 3. Same as Fig. 2 but on a logarithmic scale. The spectral power retrieved by DFT and PFT is shown with and without apodization.

Fig. 4. Power spectra of a sinusoidal signal equation (5) calculated with DFT (a), and PFT (b). Shown are 3D representations (top) and contours in the f � f1

plane. The lowest nonzero frequency is at 1/256. The underlying frequency f1 varies form 0 to 0.06. The scalloping error in frequency and amplitude can be
seen.
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value for frequency and amplitude is given by that data point that has the highest amplitude of all power spectra (compare
Fig. 2). Due to the coarse steps in DFT, both frequency and amplitude have scalloping errors.

Fig. 4 displays the obtained power spectrum (modulus squared of the amplitude vs. frequency f) when the true frequency
f1 is varied (i.e. k is varied). Due to the coarse resolution of DFT, the spectral maximum moves in a stair-like fashion; a mild
improvement can be had by apodization. For PFT, the result is much smoother immediately.

For a more immediate comparison of frequency and amplitude errors, see Figs. 5 and 6. The frequency error and the
amplitude error are plotted for the total meaningful range of f1 for the considered example in Fig. 4. The frequency error
alternates between plus/minus half a bin width for conventional DFT. PFT consistently keeps the error to one order of mag-
nitude less than DFT. It shows relative weaknesses only at the lowest and highest few bins but still beats DFT everywhere.
Part of the residual error stems from a phase dependent error described in Section 3.2. The remainder can be reduced by
increased sampling rate.

The amplitude error (scalloping error) shows up in the DFT case as false dips by 60%, corresponding to �3.92 dB. This can
be reduced to �0.86 dB with the best windowing functions [2]. PFT, in contrast, has much less deviation over most of the
frequency range considered. For comparison we indicate the �0.86 dB as a dotted line in Fig. 6.

3.2. Bichromatic oscillation

While for a monochromatic signal the coherence condition can always be met, for two noncommensurate frequencies it
cannot be met for both components at the same time. However, Trim-to-Coherence Fourier Transform still provides an
advantage.

As data sets we prepared the sum of two monochromatic signals with same amplitudes
Fig. 6.
of wind
sn ¼ cosð2pf1nÞ þ cosð2pf2nÞ ðn ¼ 0; . . . ;N � 1Þ; ð6Þ
and the frequencies vary as in Fig. 4. As an example we use f2 ¼ 0:06� f1. Fig. 7(a) shows that resolution is restricted in the
case of DFT due to the coarse steps in frequency. In contrast, PFT (b) allows to follow both frequencies through their crossing.
Obviously, at very close separation just adjacent to the crossing point PFT has an enormous advantage.

The secondary maxima explained above appear here, too. Note, however, that these artifacts may now interfere with the
main peaks and create amplitude errors. These errors are not specifically created by PFT: they are always there, but in DFT
they go unnoticed because they are swamped by coarse resolution. Just as above, the artifacts and the errors they create can
be removed by apodization, but only at the price of reduced resolution.

For the case of a closely spaced doublet of oscillations, Fig. 8 shows how the two retrieved spectral lines depend on the
relative phase of the oscillations. With DFT (a), the doublet is not quite resolved. Variation of the relative phase affects the
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Fig. 5. Frequency error as function of frequency for conventional DFT (a) and PFT (b).
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Amplitude error (scalloping error) as a function of frequency for conventional DFT (a) and PFT (b). The dotted line indicates the most favorable case
owed DFT, see text.
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reconstructed amplitudes. With PFT (b), the doublet is fully resolved, and we see the same amplitude error arising again. In
addition, an error becomes apparent in the assessment of the precise frequency difference. This error was swamped in the
coarse resolution of DFT and went unnoticed; with the improved resolution of PFT it becomes visible.

3.3. Nontrivial chirp reconstruction: phase information

We turn to data representing a chirped Gaussian wave packet. Chirp refers to a non-constant value of the frequency of the
wave over the duration of the envelope. Chirped pulses play a major role in radar technology, laser science, data transmis-
sion, etc. We here choose a linear spectral chirp, which means that the spectral phase is described by a parabola. The signal is
given by [4]
Fig. 7.
and f2 ¼

Fig. 8.
underly
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Power spectra calculated with DFT (a) and PFT (b) of a doublet consisting of the sum equation (6) of two sinusoidal signals with the frequencies f1

ð0:06� f1Þ, where f1 varies form 0 to 0.06. The lowest nonzero frequency is at 1/256. The scalloping error in frequency and amplitude can be seen.

Scalloping error of a doublet consisting of the sum Eq. (6) as a function of their phase difference D/; the lowest nonzero frequency is at 1/256. The
ing frequencies are 0.0600 and 0.0655. (a) DFT; (b) PFT.
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which has the spectral function
~sðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pt0

1þ Ci

r
exp �ð2pðf � f0ÞÞ2t2

0

2ð1þ CiÞ
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: ð8Þ
We restricted the example to N ¼ 256 sampling points tn ðtn ¼ 0; . . . ;255Þ. For convenience we use a centered wave packet
which is shifted by 128. In the example we use a normalized duration of 80, which leads to the normalized time
sn ¼ ðt=t0 � 128Þ=80 instead of tn ¼ t=t0. The chirp C is set to 0.5 and the normalized carrier frequency f0 to 6.2. The real part
of this chirped wave packet is shown in Fig. 9.

By DFT and PFT we calculate power (Fig. 10) and phase (Fig. 11). The power spectrum shows the behavior described
before. The advantage of DFT should speak for itself.
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Fig. 9. Sampled chirped wave packet together with the function Eq. (7) which is shown for clarity only between 0 and 128.
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4. Specifications

4.1. Resolution

With PFT the precision with which the exact frequency will be determined is no more given by the inverse of the time
window length T. There is an improvement reflecting the intermediate frequencies between DFT bins. The constant d can
be chosen for a compromise between computation time and resolution increase.

4.2. Computational cost and efficiency

DFT is particularly efficient when the number of data points fulfils certain conditions. Most frequently, one uses powers-
of-two, and applies fast Fourier transform (FFT) [6] or a refinement thereof [7,8]. When the available data happen not to con-
form to this criterion, a recommended strategy is zero padding [11] to reach the next power-of-two. If done judiciously, this
strategy has its merits, but ultimately it adds something to the data that was not there in the original signal. It does not rem-
edy the phase jumps from the continuous continuation, and it adds information about the signal which is false. Zero padding
is driven by an interest in computational efficiency, not in accuracy in the representation of the underlying signal! For an-
other comment on zero padding see below.

Computation time for DFT of length N scales as N2, for FFT as N logðNÞ. Trim-to-Coherence Fourier Transform has a dis-
advantage here. For PFT we need D transforms in which FFT may or may not be applicable. In the worst case, therefore,
the computation time for PFT scales as DN2; in more favorable circumstances, this is reduced to DN logðNÞ.

In the example of 256 data points, the comparison would be 256log2ð256Þ ¼ 211 for FFT, 2562 ¼ 216 for DFT, and
D � 2562 ¼ 16 � 216 ¼ 220 for PFT. These are considerable increases: 16-fold for PFT compared to DFT. However, even a stan-
dard desktop PC performs the PFT in well under one second. We therefore do not anticipate that PFT will be used where data
need to be processed in real time. Rather, we see its domain of usefulness in those problems where one deals with unique
data, i.e. data which stem either from a singular, non-repeatable incident, or are extremely difficult or costly to obtain. One
then wants to extract as much information as possible, regardless of the size of the effort.
5. Example: sunspot cycle

Data sets which are hard or even impossible to be measured in more detail seem to be natural opportunities for PFT. Con-
sider the historic data set of the number of sunspots, which is known to vary with a certain periodicity. In order to obtain the
period with better precision, data acquisition for longer time (for more centuries) is not an option. Therefore methods like
the one presented here are useful.

The number of sunspots has been counted and recorded on a daily basis for almost 260 years. It is well known that there
is a variation with a period of about 11 years, known as the Schwabe cycle. More recent measurements, taking into account
magnetic field data, indicate that magnetic polarity between northern and southern solar hemisphere alternates every other
Schwabe cycle so that the true period really is twice as long (the Hale cycle). Longer periods such as �80 years (Gleissberg
cycle) or �200 years have been reported by some researchers [12].

We used the monthly sunspot averages published in [13], considering N ¼ 3111 data points (from January 1749 to March
2008) (Fig. 12). The spectra obtained from DFT and PFT are shown in Fig. 13. In the DFT spectrum there is some indication of a
maximum near 3 nHz, but data points are so sparse that statements about any detail are not possible. From PFT, one imme-
diately sees the maximum at 2.88 nHz. This frequency corresponds to a period of 11.00 years.
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Fig. 12. Variation of the number of sunspots over the last centuries since beginning of systematic daily recordings.
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Other maxima can also be determined. The most prominent is at 3.17 nHz, which corresponds to 10.00 years. A closer
examination of the involved frequencies, i.e. a PFT over a shorter time window, reveals that the frequency varies in time.
Therefore, the fixed frequencies of 2.88 and 3.17 nHz are only an illusion, and the ‘integer’ number of years is purely coin-
cidental. There is only one prominent frequency varying in the described range.

Then there is a weak overtone at twice the fundamental frequency, indicating that the sunspot variability is not a har-
monic oscillation. Furthermore, there seems to be an indication of a subharmonic at one half the fundamental frequency
which belongs to a period of 22 years, or the Hale cycle. Note that in the case of perfect symmetry of the two half-cycles
in a Hale cycle the amplitude of this subharmonic would be zero. We conjecture that the nonzero value is more likely attrib-
utable to a statistical asymmetry, rather than an actual astrophysical asymmetry of the two hemispheres of the sun.

For extremely low frequencies there are some maxima, but at these frequencies the systematic errors are comparably
large (compare with Fig. 6). Therefore, a prediction of sub-nHz frequencies corresponding to periods of more than 100 years
is not meaningful.
6. Discussion

Phase unwrapping. In some cases conventional DFT is unable to reconstruct the spectral phase because phase variations
from bin to neighboring bin reach or exceed the order of 2p. Since the transform provides the phase only modulo 2p,
correct phase continuation is a severe problem which has already attracted quite some consideration [14]. Trim-to-
Coherence Fourier Transform resolves many frequencies between the original DFT frequency bins; therefore the phase
differences are reduced by a corresponding factor so that the continuation will, in most cases, cease to be a problem.
Iterative frequency search. With the additional knowledge that there is only one dominant frequency component in the
signal, one can modify PFT to find this frequency in an iterative way. Instead of calculating D steps between each bin,
d is used as a variable which bisects the interval. Now the interval can be reduced by choosing that interval, which con-
tains the higher spectral power. This can be repeated until the desired precision is reached. This procedure considerably
decrease the computational time.
Another way to trim to coherence. The central idea about our technique is to avoid the phase jumps in the continuous con-
tinuation; PFT achieves that by rescaling the frequency. Another way would be to simply chop data points of the time
series until an integer number of oscillations is left (to within the step width). This was schematically shown in Fig. 1.
We have systematically explored this variant and find that it has advantages over DFT similar to those of PFT. However,
we feel that PFT should be preferred because removing data points discards valuable information.
Zero padding. In the same spirit, zero padding also adjusts the length of the data set: conventionally, one appends zeroes
until the next power-of-two is reached. As commented above, this is driven by an argument about computational effi-
ciency, not about signal structure. It is also unfortunate because zeroes are almost always false information about the
underlying signal. And in contrast to our technique, zero padding does nothing about the phase jumps which are the root
cause of most problems.

A variant would be to add many more zeroes so that at some point one again obtains the coherent case to within the grid
resolution. We have even explored this variant of trimming to coherence, and find the following: a given signal frequency
can be trimmed to coherence exactly if it is commensurate with the data set length. PFT accommodates both commensurate
and incommensurate cases directly by appropriate choice of d. Whenever both happen to be commensurate, both ap-
proaches yield identical results. It is true that massive zero padding can approximate an irrational to any arbitrary precision
when even more zeroes are appended, but then the computation time for zero padding diverges, whereas PFT can treat any
incommensurate frequency in one go.
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7. Conclusion

The method presented here provides spectral data points in between the frequency bins of standard DFT. According to
conventional wisdom, the inverse of the bin separation equals the duration of the time series. It goes without saying that
the increased number of data points in the spectrum from Trim-to-Coherence Fourier Transform in no way implies that after
inverse transformation a longer piece of the temporal history can be reconstructed than was originally measured. If the data
are truly stationary, such conclusion would be trivially true; if they are not, it would be wrong.

Several more tenets of conventional wisdom are disputed here:

� One should always strive to use FFT, and hence N ¼ 2n. If necessary, zeros can be padded.We have shown here that zero
padding is not the only, and often not the best, way to reveal information about the signal.

� Apodization windowing is always beneficial.We have shown here that when the frequency of the spectral peak needs to
be determined, apodization is not helpful. However, it can reduce spurious side peaks, if at the expense of reduced spectral
resolution; this carries over to Trim-to-Coherence Fourier Transform.

� Spectral resolution is always limited by the total length of the time series.

We have shown (see Section 3.1.2) that the effective resolution can be improved by increasing the sampling rate beyond
the minimum requirement of Nyquist’s sampling condition. This is a major reinterpretation of the sampling condition which
states that the full information is present as long as the sampling frequency is at least twice that of the maximum frequency
in the signal. In Trim-to-Coherence Fourier Transform a significant oversampling (many more than two points per period)
plays out its benefit in terms of enhanced precision in frequency, amplitude and phase.

We envision that Trim-to-Coherence Fourier Transform can be applied to a multitude of situations. It will prove most ben-
eficial where data sets contain only few oscillations, as may be the case whenever (a) one prefers to look only at short time
series because the stationarity of the process is in question, e.g. through drift of parameters or when (b) a unique data set
from a singular, non-repeatable incident is all one has to work with. Both conditions are met in the sunspot example above;
the latter can include historic data, or data taken from rare or catastrophic events which cannot be repeated. Consider anal-
ysis of the audio record of an anonymous telephone call in crime investigation, etc.
Appendix

Finally, we present a mathematical description of our method. For simplicity, we consider first a harmonic oscillation of
fixed frequency. Then the exponential function sðtÞ ¼ e2pif1t has the real frequency f1. Instead of the function sðtÞ, only N þ 1
sampled values sðnDtÞ ðn ¼ 0; . . . ;NÞ are given. Here Dt > 0 is the grid spacing. Let T ¼ NDt. Assume that the Nyquist sam-
pling condition jf1j < 1=ð2DtÞ is fulfilled (see [15, p. 183]). It is our aim to determine the frequency f1 approximately.

First we compute the Fourier coefficients cðTÞk ðsÞ of sðtÞwith respect to the interval ½0; T�. As usually, Z denotes the set of all
integers. If f1T 2 Z, then we obtain
cðTÞk ðsÞ ¼
1
T

Z T

0
sðtÞe�2pitk=T dt ¼ dðf1T � kÞ ðk 2 ZÞ;
where dðkÞ denotes the Kronecker symbol, i.e., dð0Þ ¼ 1 and dðkÞ ¼ 0 for k – 0. But if f1T is not an integer, then
cðTÞk ðsÞ ¼ eipðf1T�kÞ sincðf1T � kÞ ðk 2 ZÞ:
Here we use sinc t ¼ sinðptÞ=ðptÞ for t – 0 and sinc0 ¼ 1. The Fourier coefficient cðTÞk ðsÞ with index k closest to f1T will have
the largest magnitude. Fourier coefficients with neighboring indices k (i.e. jf1T � kj is small) typically will have nonzero val-
ues. This is the phenomenon of sidelobes. The appearance of these sidelobes is a symptom of leakage. This leakage effect pro-
duces frequency components that are not present in the original function sðtÞ. Further, the Fourier coefficients oscillate and
converge to zero like jf1T � kj�1 for jkj ! 1.

The DFT has a similar property of leakage. By the trapezoidal rule, we can compute cðTÞk ðsÞ ðk ¼ �N=2þ 1; . . . ;N=2Þ via DFT
of length N, where we set hðtÞ ¼ e2piðf1T�kÞt=T :
cðTÞk ðsÞ �
1
N

1
2

hð0Þ þ
XN�1

n¼1

hðnDtÞ þ 1
2

hðTÞ
" #

¼ ~sðNÞk ¼ 1
N

XN�1

n¼0

snwnk
N ðwN ¼ e�2pi=NÞ:
Using average value at endpoints, the input values sn of DFT of length N are given by
sn ¼
sðnDtÞ for n ¼ 1; . . . ;N � 1;
1
2 ðsð0Þ þ sðTÞÞ for n ¼ 0:

(



Now we calculate the values ~sðNÞk ðk ¼ �N=2þ 1; . . . ;N=2Þ of the DFT of length N explicitly by the known summation
formula
XN�1

n¼1

einx ¼ eiNx=2 sinððN � 1Þx=2Þ
sinðx=2Þ
with x ¼ 2pðf1T � kÞ=N. Note that from jf1j < 1=ð2DtÞ and jkj 6 N=2 it follows jxj < 2p. By simple calculation, we get for
k ¼ �N=2þ 1; . . . ;N=2
cðTÞk ðsÞ � ~sðNÞk ¼ eipðf1T�kÞ cosðpðf1T�kÞ=NÞ
sincððf1T�kÞ=NÞ � sincðf1T � kÞ:
For the Phase-Rotation Fourier Transform, we multiply sðtÞ by e�2pidt=T ðd 2 ½0;1½Þ and consider
sðdÞðtÞ ¼ e2piðf1T�dÞt=T :
Then the Fourier coefficients of sðdÞðtÞ with respect to the interval ½0; T� read as follows:
cðTÞk ðs
ðdÞÞ ¼ eipðf1T�d�kÞ sincðf1T � k� dÞ ðk 2 ZÞ:
By the trapezoidal rule, we can compute cðTÞk ðsðdÞÞ approximately via DFT of length N. Let ~sðdÞk ðk ¼ �N=2þ 1; . . . ;N=2Þ be the
values of this DFT. Similarly as above, we obtain for k ¼ �N=2þ 1; . . . ;N=2
cðTÞk ðs
ðdÞÞ � ~sðdÞk ¼ eipðf1T�d�kÞ cosðpðf1T � k� dÞ=NÞ

sincððf1T � k� dÞ=NÞ � sincðf1T � k� dÞ:
Thus, ~sðdÞk is an approximate value of the Fourier coefficient cðTÞk ðsðdÞÞ. By
cðTÞk ðs
ðdÞÞ ¼ 1

T

Z T

0
sðtÞe�2pitðkþdÞ=T dt;
cðTÞk ðsðdÞÞ coincides with the kth Fourier coefficient of sðtÞwith respect to the rotated harmonic wave e2pitðkþdÞ=T with frequency
f ¼ ðkþ dÞ=T. Now we substitute f into ~sðdÞk and obtain for k ¼ �N=2þ 1; . . . ;N=2
~sðdÞk ¼ eipðf1�f Þ � cosðpðf1 � f ÞDtÞ
sincððf1 � f ÞDtÞ � sincTðf1 � f Þ;
such that the power spectrum reads as follows:
j~sðdÞk j
2 ¼ cosðpðf1�f ÞDtÞ

sincððf1�f ÞDtÞ

� �2
� sincTðf1 � f Þð Þ2 6 1:
Note that the estimate x 6 tan x for all x 2 ½0;pÞ provides
cosðptÞ
sinc t

� �2

6 1 ðt 2 ð�1;1ÞÞ:
The maximum value of the power spectrum is one at f ¼ f1. For T � 1, the power spectrum has a sharp peak at f ¼ f1. We
choose k0 2 f�N=2þ 1; . . . ;N=2g and d0 2 ½0;1½ such that j~sðd

0 Þ
k0
j2 � 1. Consequently, the wanted frequency f1 is approximately

given by f ¼ ðk0 þ d0Þ=T .
These results can be immediately extended to the general case of an exponential sum
sðtÞ ¼
XJ

j¼1

aj e2pifjt
with complex coefficients aj – 0 and real frequencies fj with a small integer J > 1. We know only the sampled values
sðnDtÞ ð D Þð
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aj eipTðfj�f Þ cosðpðfj � f ÞDtÞ
sincððfj � f ÞDtÞ � sincðTðfj � f ÞÞ
dominates all the other terms of the sum ~sðdÞk , since the magnitude of each other term is smaller than e near fj. By T � 1, in the
power spectrum we can observe sharp peaks at f ¼ fj ðj ¼ 1; . . . ; JÞ of height jajj2. In the power spectrum, we determine all
maximum values at ðfj; jajj2Þ ðj ¼ 1; . . . ; JÞ with jajjP Je approximately.
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